Publications, conference talks, scholarships and grants

Preprints

  • M. Bauer, S. Joshi, K. Modin. Diffeomorphic random sampling using optimal information transport.
    [arXiv]
  • M. Bauer, S. Joshi, K. Modin. On Geodesic Completeness of Riemannian Metrics on Smooth Probability Densities.
    [arXiv]
  • S. Larsson, T. Matsuo, K. Modin, M. Molteni. Discrete Variational Derivative Methods for the EPDiff Equation.
    [arXiv]
  • R. McLachlan, K. Modin, H. Munthe-Kaas, O. Verdier. What are Butcher series, really?, 2015.
    [arXiv]

Peer-reviewed articles

  • K. Modin. Geometry of Matrix Decompositions Seen Through Optimal Transport and Information Geometry, accepted in J. Geom. Mech., 2016.
    [arXiv]
  • R. McLachlan, K. Modin, O. Verdier. Symmetry reduction for central force problems, Eur. J. Phys., 37(5):0055003, 2016.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier. Geometry of discrete-time spin systems, J. Nonlin. Sci., 2016. 26(5):1507-1523, 2016.
    [link] [arXiv]
  • C. Rottman, M. Bauer, K. Modin, S. Joshi. Weighted Diffeomorphic Density Matching with Applications to Thoracic Image Registration, Proc. 5th MICCAI Workshop on Mathematical Foundations of Computational Anatomy (MFCA), Munich, Germany, October 9, 2015.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier. A minimal-variable symplectic integrator on spheres, Math. Comp., 2016. DOI:10.1090/mcom/3153
    [link] [arXiv]
  • M. Bauer, S. Joshi, K. Modin. Diffeomorphic density matching by optimal information transport, SIAM J. Imaging Sci., 8(3):1718-1751, 2015.
    [link] [arXiv]
  • R. McLachlan, K. Modin, H. Munthe-Kaas, O. Verdier.  B-series methods are exactly the affine equivariant methods, Numer. Math., 133(3):599-622, 2016.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier. Symplectic integrators for spin systems, Phys. Rev. E, 89:061301, 2014.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier. Collective symplectic integrators, Nonlinearity, 27(6):1525-1542, 2014.
    [link] [arXiv]
  • S. Marsland, R. McLachlan, K. Modin, M. Perlmutter. On conformal variational problems and free boundary continua, J. Phys. A, 47(14):145204, 2014.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier. Collective Lie-Poisson integrators on R3, IMA. J. Num. Anal., 35(2):546-560, 2015.
    [link] [arXiv]
  • K. Modin. Generalized Hunter–Saxton equations, optimal information transport, and factorization of diffeomorphisms, J. Geom. Anal., 25(2):1306-1334, 2015.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier, M. Wilkins. Symplectic integrators for index 1 constraints, SIAM J. Sci. Comput. (SISC), 35(5):A2150-A2162, 2013.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier, M. Wilkins. Geometric Generalisations of SHAKE and RATTLE, Found. Comput. Math. (FoCM), 14(2):339-370, 2014.
    [link] [arXiv]
  • K. Modin and O. Verdier. Integrability of Nonholonomically Coupled Oscillators, Discrete Contin. Dyn. Syst., 34(3):1121-1130, 2013.
    [link] [arXiv]
  • S. Marsland, R. McLachlan, K. Modin, M. Perlmutter. Geodesic Warps by Conformal Mappings, Int. J. Comp. Vis., 105(2):144-154, 2013
    [link] [arXiv]
  • S. Marsland, R. McLachlan, K. Modin, M. Perlmutter. On a Geodesic Equation for Planar Conformal Template Matching. Proc. MFCA’11, 2011.
    [pdf]
  • K. Modin and G. Söderlind. Geometric Integration of Hamiltonian Systems Perturbed by Rayleigh Damping. BIT Num. Math., 51(4):977-1007, 2011.
    [link] [arXiv]
  • K. Modin, M. Perlmutter, S. Marsland, R. McLachlan. On Euler-Arnold Equations and Totally Geodesic Subgroups. J. Geom. Phys., 61(8):1446-1461, 2011.
    [link]
  • K. Modin. Time-transformation and reversibility of Nambu-Poisson systems. J. Gen. Lie Theory Appl., 3(1):39-52, 2009.
    [link]
  • K. Modin, On explicit adaptive symplectic integration of separable Hamiltonian systems, J. Mult. Body Mech.222(4):1464-1493, 2008.
    [link]
  • K. Modin, D. Fritzson, and C. Führer, Semiexplicit Numerical Integration by Splitting with Application to Dynamic Multibody Problems with Contacts. Proceedings of The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007), Linköping University Electronic Press, 2007.
    [pdf]
  • K. Modin, C. Führer, Time-step adaptivity in variational integrators with application to contact problems, ZAMM Z. Angew. Math. Mech.86(10):785-794, 2006.
    [link]
  • K. Modin, D. Fritzson, C. Führer, and G. Söderlind. A new class of variable step-size methods for multibody dynamics. Proceedings of Multibody Dynamics 2005, ECCOMAS Thematic Conference, Madrid, June 21–24, 2005.
    [pdf]

Technical reports, theses, etc.

  • K. Modin. Diffeomorphic density transport – a numerical challenge, MFO Report No. 18/2016, 50-53, 2016. DOI:10.4171/OWR/2016/18
    [link]
  • K. Modin and S. Sommer (Eds.). Proceedings Of Math On The Rocks Shape Analysis Workshop In Grundsund, Zendo, 2015. DOI:10.5281/zendo.33558
    [link]
  • K. Modin, M. Perlmutter, S. Marsland, R. McLachlan. Geodesics on Lie Groups: Euler Equations and Totally Geodesic Subgroups. Res. Lett. Inf. Math. Sci., 14:79-106, 2010.
    [link]
  • K. Modin. Adaptive Geometric Numerical Integration of Mechanical Systems. Ph.D. thesis, defended at Lund University May 22, 2009 (Opponent: Professor Brynjulf Owren, Trondheim), ISBN 978-91-628-7778-1, Lund University, 2009.
    [link]
  • K. Modin. Geometric Integration of Non-autonomous Systems with Application to Rotor Dynamics, 2009.
    [arXiv]
  • K. Modin, Adaptive Numerical Integrators for Dynamic Multibody Problems. Licentiate thesis, defended at Lund University May 2008 (Opponent: Professor Ben Leimkuhler, Edinburgh), ISBN 978-91-633-2715-5, Lund University, 2008.
  • K. Modin, Sampling and Multistep Methods. Master’s Theses in Mathematical Sciences, 2004:E10, ISSN 1404-6342, Lund University, 2004.
    [pdf] [summary]

Conference talks

  • K. Modin, R. McLachlan, O. Verdier, The Spherical Midpoint Method, Foundations of Computational Mathematics, Barcelona, Spain, July 10-19, 2017.
  • K. Modin, Diffeomorphisms and imaging, Manifolds and Geometric Integration Colloquia (MaGIC), Vatnahalsen, Norway, March 1-5, 2017.
  • K. Modin, The polar decomposition as the limit of a lifted entropy gradient flow, CAVALIERI Workshop on Optimal Transport and Optimization in Imaging, Inria Research Center, Paris, October 11-12, 2016.
  • K. Modin, Deformation gradient flows, Math in the Mine – Shape Analysis Meeting in Tende, France, June 26-July 2, 2016.
  • K. Modin, Diffeomorphic density transport – a numerical challenge, MFO Workshop on Geometric Numerical Integration, Oberwolfach, Germany, March 20-26, 2016.
  • K. Modin, Matrix decompositions and associated Riemannian gradient flows, Math on the Rocks – Shape Analysis Meeting in Grundsund, Sweden, July 2015.
  • K. Modin, M. Bauer, S. Joshi, Diffeomorphic density matching using Fisher-Rao geodesics, ESI workshop: Infinite-dimensional Riemannian Geometry, Vienna, Austria, January 12-16, 2015.
  • K. Modin, R. McLachlan, O. Verdier, Spherical midpoint method, Foundations of Computational Mathematics FoCM’14, Montevideo, Uruguay, December 11-20, 2014.
  • K. Modin, Optimal information transport, AIMS conference 2014, workshop on Geometric Mechanics, Madrid, Spain, July 7-11, 2014.
  • K. Modin, R. McLachlan, O. Verdier, Spherical midpoint method, MaGIC 2014, Meråker, Norway, February 24-27, 2014.
  • K. Modin, R. McLachlan, O. Verdier, Collective integrators for point vortex dynamics on the sphere, SciCADE 2013, Valladolid, Spain, September 16-20, 2013
  • K. Modin, O. Verdier, Structure preserving methods for non-holonomic systems: examples and counter-examples, ANODE 2013 in celebration of the 80th birthday of John Butcher, Auckland, New Zealand, Januari 7-11, 2013.
  • K. Modin. Higher dimensional generalisation of the μ-Hunter-Saxton equation, Geometry, Mechanics and Dynamics – the Legacy of Jerry Marsden, Field Institute, Toronto, Canada, July 3–27, 2012.
  • K. Modin. Higher dimensional generalisation of the μ-Hunter-Saxton equation, Misteltoe Bay Geometric Integration Conference (MaGIC-2012), Marlborough Sounds, New Zealand, January 15–19, 2012.
  • K. Modin, S. Marsland, R. McLachlan, M. Perlmutter. On a Geodesic Equation for Planar Conformal Template Matching, MICCAI workshop on Mathematical Foundations of Computational Anatomy (MFCA’11), September 22, 2011.
  • K. Modin, G. Söderlind. Geometric integration of Hamiltonian systems perturbed by Rayleigh damping. Foundations of Computational Mathematics FoCM’11, Budapest, Hungary, July 4–14, 2011.
  • K. Modin, S. Marsland, R. McLachlan, M. Perlmutter. Generalised Euler Equations and Image Registration. Tasmanian Rigorous Analysis and Geometric Integration Conference, Tasmania, Australia, December 12-16, 2010.
  • K. Modin, S. Marsland, R. McLachlan, M. Perlmutter. Generalised Euler Equations and Image Template Matching. New Zealand Mathematical Society Colloquium 2010, University of Otago, Dunedin, New Zealand, December 7-9, 2010.
  • K. Modin, S. Marsland, R. McLachlan, M. Perlmutter. Generalised Euler Equations and Image Transformations. The 13th Manawatu-Wellington Applied Mathematics Conference, Massey University, Palmerston North, New Zealand, November 12, 2010.
  • K. Modin. Geodesic flow, Euler equations and D’Arcy Thompson’s famous fish transformation. BIT 50 – Trends in Numerical Computing, Lund, Sweden, June 17-20, 2010.
  • K. Modin, G. Söderlind. Geometric Integration of Hamiltonian Systems Perturbed by Rayleigh Damping. ECCM 2010, IV European Conference on Computational Mechanics, Paris, France, May 16-21, 2010.
  • K. Modin, G. Söderlind. Geometric Integration of Hamiltonian Systems Perturbed by Rayleigh Damping. New Zealand Mathematics Colloquium 2009, Massey University – Albany, Auckland, New Zealand, December 8-10, 2009.
  • K. Modin, G. Söderlind. Nambu Mechanics and its Connection to Adaptive Numerical Integration. CoPS/Nordita Seminar, Stockholm, Sweden, December 2, 2008.
  • K. Modin. Nambu Mechanics and Time-transformation with Application to Adaptive Numerical Integration. Nordic Öresund Workshop, Lund, Sweden, November 17–18, 2008.
  • K. Modin, G. Söderlind. On explicit adaptive symplectic integration of separable Hamiltonian systems. AMS–NZMS 2007, Wellington, New Zealand, December 12–15, 2007.
  • K. Modin, D. Fritzson, and C. Führer. Semiexplicit Numerical Integration by Splitting with Application to Dynamic Multibody Problems with Contacts. The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007), Göteborg (Särö), Sweden, 30–31 October, 2007.
  • K. Modin, G. Söderlind. Explicit adaptive integration of Poisson systems based on splitting. SciCADE 2007, Saint–Malo, France, July 9–13, 2007.
  • K. Modin, C. Führer, G. Söderlind. Adaptivity in mechanical integrators. 11th Seminar “NUMDIFF” on Numerical Solution of Differential and Differential–Algebraic equations. Halle, Germany, September 4–8, 2006.
  • K. Modin and C. Führer. Time-step adaptivity in variational integrators. China- Norway-Sweden Workshop on Computational Mathematics, Lund, Sweden, June 5–7, 2006.
  • K. Modin. Rolling bearing simulations: model examples and numerical aspects. 2nd Workshop on Numerical Methods in Multibody Dynamics, Bad Herrenalb, Germany, October 26–28, 2005.
  • K. Modin, C. Führer, G. Söderlind. A new class of variable step-size methods for multibody dynamics. Multibody Dynamics 2005, ECCOMAS Thematic Conference, Madrid, Spain, June 21–24, 2005.

Scholarships and grants

Advertisements