Publications

Jump to: Preprints / Articles / Reports

Preprints

  • K. Modin and O. Verdier. How do nonholonomic integrators work?, 2017
    [arXiv]
  • M. Bauer, S. Joshi, K. Modin. Diffeomorphic random sampling using optimal information transport, 2017.
    [arXiv]
  • G. Bogfjellmo, K. Modin, O. Verdier. Numerical Algorithm for C2-splines on Symmetric Spaces, 2017.
    [arXiv]
  • J. Benn, S. Marsland, R. McLachlan,  K. Modin, O. Verdier. Currents and finite elements as tools for shape space, 2017.
    [arXiv]
  • S. Larsson, T. Matsuo, K. Modin, M. Molteni. Discrete Variational Derivative Methods for the EPDiff Equation, 2016.
    [arXiv]

Peer-reviewed articles

  • M. Bauer, S. Joshi, K. Modin. On Geodesic Completeness of Riemannian Metrics on Smooth Probability Densities, Calc. Var., 56:113, 2017.
    [link] [arXiv]
  • K. Modin. Geometry of Matrix Decompositions Seen Through Optimal Transport and Information Geometry, J. Geom. Mech., 9(3):335-390, 2017.
    [link] [arXiv]
  • R. McLachlan, K. Modin, H. Munthe-Kaas, O. Verdier. Butcher series: A story of rooted trees and numerical methods for evolution equations, accepted in Asia Pacific Mathematics Newsletter, 2017.
    [arXiv]
  • R. McLachlan, K. Modin, O. Verdier. Symmetry reduction for central force problems, Eur. J. Phys., 37(5):0055003, 2016.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier. Geometry of discrete-time spin systems, J. Nonlin. Sci., 26(5):1507-1523, 2016.
    [link] [arXiv]
  • C. Rottman, M. Bauer, K. Modin, S. Joshi. Weighted Diffeomorphic Density Matching with Applications to Thoracic Image Registration, Proc. 5th MICCAI Workshop on Mathematical Foundations of Computational Anatomy (MFCA), Munich, Germany, October 9, 2015.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier. A minimal-variable symplectic integrator on spheres, Math. Comp., 2016. DOI:10.1090/mcom/3153
    [link] [arXiv]
  • M. Bauer, S. Joshi, K. Modin. Diffeomorphic density matching by optimal information transport, SIAM J. Imaging Sci., 8(3):1718-1751, 2015.
    [link] [arXiv]
  • R. McLachlan, K. Modin, H. Munthe-Kaas, O. Verdier.  B-series methods are exactly the affine equivariant methods, Numer. Math., 133(3):599-622, 2016.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier. Symplectic integrators for spin systems, Phys. Rev. E, 89:061301, 2014.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier. Collective symplectic integrators, Nonlinearity, 27(6):1525-1542, 2014.
    [link] [arXiv]
  • S. Marsland, R. McLachlan, K. Modin, M. Perlmutter. On conformal variational problems and free boundary continua, J. Phys. A, 47(14):145204, 2014.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier. Collective Lie-Poisson integrators on R3, IMA. J. Num. Anal., 35(2):546-560, 2015.
    [link] [arXiv]
  • K. Modin. Generalized Hunter–Saxton equations, optimal information transport, and factorization of diffeomorphisms, J. Geom. Anal., 25(2):1306-1334, 2015.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier, M. Wilkins. Symplectic integrators for index 1 constraints, SIAM J. Sci. Comput. (SISC), 35(5):A2150-A2162, 2013.
    [link] [arXiv]
  • R. McLachlan, K. Modin, O. Verdier, M. Wilkins. Geometric Generalisations of SHAKE and RATTLE, Found. Comput. Math. (FoCM), 14(2):339-370, 2014.
    [link] [arXiv]
  • K. Modin and O. Verdier. Integrability of Nonholonomically Coupled Oscillators, Discrete Contin. Dyn. Syst., 34(3):1121-1130, 2013.
    [link] [arXiv]
  • S. Marsland, R. McLachlan, K. Modin, M. Perlmutter. Geodesic Warps by Conformal Mappings, Int. J. Comp. Vis., 105(2):144-154, 2013
    [link] [arXiv]
  • S. Marsland, R. McLachlan, K. Modin, M. Perlmutter. On a Geodesic Equation for Planar Conformal Template Matching. Proc. MFCA’11, 2011.
    [pdf]
  • K. Modin and G. Söderlind. Geometric Integration of Hamiltonian Systems Perturbed by Rayleigh Damping. BIT Num. Math., 51(4):977-1007, 2011.
    [link] [arXiv]
  • K. Modin, M. Perlmutter, S. Marsland, R. McLachlan. On Euler-Arnold Equations and Totally Geodesic Subgroups. J. Geom. Phys., 61(8):1446-1461, 2011.
    [link]
  • K. Modin. Time-transformation and reversibility of Nambu-Poisson systems. J. Gen. Lie Theory Appl., 3(1):39-52, 2009.
    [link]
  • K. Modin, On explicit adaptive symplectic integration of separable Hamiltonian systems, J. Mult. Body Mech.222(4):1464-1493, 2008.
    [link]
  • K. Modin, D. Fritzson, and C. Führer, Semiexplicit Numerical Integration by Splitting with Application to Dynamic Multibody Problems with Contacts. Proceedings of The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007), Linköping University Electronic Press, 2007.
    [pdf]
  • K. Modin, C. Führer, Time-step adaptivity in variational integrators with application to contact problems, ZAMM Z. Angew. Math. Mech.86(10):785-794, 2006.
    [link]
  • K. Modin, D. Fritzson, C. Führer, and G. Söderlind. A new class of variable step-size methods for multibody dynamics. Proceedings of Multibody Dynamics 2005, ECCOMAS Thematic Conference, Madrid, June 21–24, 2005.
    [pdf]

Technical reports, etc.

  • K. Modin. Diffeomorphic density transport – a numerical challenge, MFO Report No. 18/2016, 50-53, 2016. DOI:10.4171/OWR/2016/18
    [link]
  • K. Modin and S. Sommer (Eds.). Proceedings Of Math On The Rocks Shape Analysis Workshop In Grundsund, Zendo, 2015. DOI:10.5281/zendo.33558
    [link]
  • K. Modin, M. Perlmutter, S. Marsland, R. McLachlan. Geodesics on Lie Groups: Euler Equations and Totally Geodesic Subgroups. Res. Lett. Inf. Math. Sci., 14:79-106, 2010.
    [link]
  • K. Modin. Adaptive Geometric Numerical Integration of Mechanical Systems. Ph.D. thesis, defended at Lund University May 22, 2009 (Opponent: Professor Brynjulf Owren, Trondheim), ISBN 978-91-628-7778-1, Lund University, 2009.
    [link]
  • K. Modin. Geometric Integration of Non-autonomous Systems with Application to Rotor Dynamics, 2009.
    [arXiv]
  • K. Modin, Adaptive Numerical Integrators for Dynamic Multibody Problems. Licentiate thesis, defended at Lund University May 2008 (Opponent: Professor Ben Leimkuhler, Edinburgh), ISBN 978-91-633-2715-5, Lund University, 2008.
  • K. Modin, Sampling and Multistep Methods. Master’s Theses in Mathematical Sciences, 2004:E10, ISSN 1404-6342, Lund University, 2004.
    [pdf] [summary]
Advertisements